Wire wrap is a technology used to assemble electronics. It is a method to construct circuit boards without having to make a printed circuit board. Wires can be wrapped by hand or by machine, and can be hand-modified afterwards. It was popular for large-scale manufacturing in the 60s and early 70s, and continues to be used for short runs and prototypes. It is unusual among prototyping technologies in that very complex assemblies can be produced by automated equipment, and then easily repaired or modified by hand.
Wire wrap construction can produce assemblies which are more reliable than printed circuits: connections are less prone to fail due to vibration or physical stresses on the base board, and the lack of solder precludes soldering faults such as corrosion, cold joints and dry joints. The connections themselves are firmer and have lower electrical resistance due to cold welding of the wire to the terminal post at the corners.
A correctly made wire-wrap connection is seven (7) turns of wire with 0.5–1.5 turns of insulated wire at the bottom for strain relief.[1] The square hard-gold-plated post thus forms 28 redundant contacts. The silver-plated wire coating cold-welds to the gold. If corrosion occurs, it occurs on the outside of the wire, not on the gas-tight contact where oxygen cannot penetrate to form oxides. A correctly designed wire-wrap tool applies up to twenty tons of force per square inch on each joint.
Wire wrap was used for assembly of high frequency prototypes and small production runs, including gigahertz microwave circuits and super computers. It is unique among automated prototyping techniques in that wire lengths can be exactly controlled, and twisted pairs or magnetically-shielded twisted quads can be routed together.
Wire wrap construction became popular around 1960 in circuit board manufacturing, and use has now sharply declined. Surface-mount technology has made the technique much less useful than in previous decades. Solder-less breadboards and the decreasing cost of professionally made PCBs have nearly eliminated this technology.
In telecommunications wire wrap is in common high volume use in modern communications networks for cross connects between copper wiring plant. For example, most phone lines from the outside plant go to wire wrap panels in a central office, whether used for POTS phone service, DSL or T1 lines. Typically at a main distribution frame Internal Cross Facilities Assignments and External Cross Facilities Assignments, are connected together via jumpers that are wire wrapped. Wire wrap is popular in telecommunications since it is one of the most secure ways to attach wires, and provides excellent and consistent data layer contact. Wirewrap panels are rated for high quality data services, including Category 5 grade wiring. The principal competitor in this application is punch blocks, which are quicker but less secure.
Contents |
The electronic parts sometimes plug into sockets. The sockets are attached with cyanoacrylate (or silicone adhesive) to thin plates of glass-fiber-reinforced epoxy (fiberglass).
The sockets have square posts. The usual posts are 0.025 in (0.64 mm) square, 1 in (25.4 mm) high, and spaced at 0.1 in (2.54 mm) intervals. Premium posts are hard-drawn beryllium copper alloy plated with a 0.000025 in (640 nm) of gold to prevent corrosion. Less-expensive posts are bronze with tin plating.
30 gauge silver-plated soft copper wire is insulated with a fluorocarbon that does not emit dangerous gases when heated. The most common insulation is "Kynar".
The 30 AWG Kynar is cut into standard lengths, then one inch of insulation is removed on each end.
A "wire wrap tool" has two holes. The wire and 1⁄4 in (6.4 mm) of insulated wire are placed in a hole near the edge of the tool. The hole in the center of the tool is placed over the post.
The tool is rapidly twisted. The result is that 1.5 to 2 turns of insulated wire are wrapped around the post, and atop that, 7 to 9 turns of bare wire are wrapped around the post. The post has room for three such connections, although usually only one or two are needed. This permits manual wire-wrapping to be used for repairs.
The turn and a half of insulated wire helps prevent wire fatigue where it meets the post.
Above the turn of insulated wire, the bare wire wraps around the post. The corners of the post bite in with pressures of tons per square inch. This forces all the gases out of the area between the wire's silver plate and the post's gold or tin corners. Further, with 28 such connections (seven turns on a four-cornered post), a very reliable connection exists between the wire and the post. Furthermore, the corners of the posts are quite "sharp": they have a quite-small radius of curvature.
There are three ways of placing wires on a board.
In professionally-built wire-wrap boards, long wires are placed first so that shorter wires mechanically secure the long wires. Also, to make an assembly more repairable, wires are applied in layers. The ends of each wire are always at the same height on the post, so that at most three wires need to be replaced to replace a wire. Also, to make the layers easier to see, they are made with different colors of insulation. In space-rated or airworthy wire-wrap assemblies, the wires are boxed, and may be conformally-coated with wax to reduce vibration. Epoxy is never used for the coating because it makes an assembly unrepairable.
Wire wrapping technology was developed after WWII at Bell Laboratories as a means of making electrical connections in a new relay being designed for use in the Bell Telephone system. The design team at Bell was headed up by Arthur Charles Keller (18 Aug 1901 – 25 Aug 1983), a renowned inventor and audio engineer. A new hand tool to make the wrap, the “Keller Wrap Gun” was also designed at Bell Labs, and the entire wrap system was passed over to Western Electric for execution. After a “make or buy” committee at Western Electric decided to have the hand tool manufactured by an outside vendor, Western Electric sent the tool contract out for bids. Keller Tool of Grand Haven, Michigan, a supplier of rotary hand tools to Western Electric, won the contract and made several design changes to make the tool easier to manufacture and to use. Keller began manufacturing the tools in 1953, and subsequently obtained a license from Western Electric allowing sale of the technology on the open market. The tool was marketed under its original name – since the name of the manufacturer was coincidentally the same as the name of the inventor.
A manual wire wrap tool resembles a small pen. It is convenient for minor repairs. Wire wrap is one of the most repairable systems for assembling electronics. Posts can be rewrapped up to ten times without appreciable wear, provided that new wire is used each time. Slightly larger jobs are done with a manual "wire wrap gun" having a geared and spring-loaded squeeze grip to spin the bit rapidly.
Such tools were used in large numbers in American telephone exchanges in the last third of the 20th century, usually with a bigger bit to handle 22 or 24 AWG wire rather than the smaller 28 or 30 AWG used in circuit boards and backplanes. The larger posts can be rewrapped hundreds of times. They persisted into the 21st century in distribution frames where insulation-displacement connectors had not taken over entirely. Larger, hand held, high speed electric wrap guns replaced soldering in the late 1960s for permanent wiring, when installing exchange equipment. In the middle 1980s they were gradually replaced by connectorized cables.
The Apollo Guidance Computer with its short production run and stringent reliability requirement was one of the early applications of wire wrap to computer assembly.
Semiautomated powered wire-wrap systems place "wire-wrap guns" on arms moved in two dimensions by computer-controlled motors. The guns are manually pulled down, and the trigger pressed to make a wrap. The wires are inserted into the gun manually. This system allows the operator to place wires without concern about whether they are on the correct pin, since the computer places the gun correctly.
Semi-automated wire wrapping is unique among prototyping systems because it can place twisted pairs, and twisted magnetically-shielded quads, permitting the assembly of complex radar and high speed digital circuits.
Automated wire-wrap machines, as manufactured by the Gardner Denver Company in the 1960s and 1970s, were capable of automatically routing, cutting, stripping and wrapping wires onto an electronic "backplane" or "circuit board". The machines were driven by wiring instructions encoded onto punched cards, Mylar punched hole tape, and early micro computers.
The earliest machines (14FB and 14FG models, for example) were initially configured as "horizontal", which meant that the wire wrap board was placed upside down (pins up) onto a horizontal tooling plate, which was then rolled into the machine and locked onto a rotating (TRP table rotational position of four positions) and shifting (PLP = pallet longitudinal position of 11 positions) pallet assembly. These machines included very large hydraulic units for powering the servos that drove the ball screw mounted "A" and "B" drive carriages, a 6 ft (1.8 m) tall electronics cabinet loaded with hundreds of IBM control relays, many dozens of solenoids for controlling the various pneumatic mechanical subsystems, and an IBM 029 card reader for positioning instructions. The automatic wire wrap machines themselves were quite large, 6 ft (1.8 m) tall and 8 ft (2.4 m) square. Servicing the machines was extremely complex, and often meant climbing inside them just to work on them. This could be quite dangerous if safety interlocks were not maintained properly; there were rumors throughout the industry that some fatalities/serious injuries had actually occurred.
Later, somewhat smaller machines were "vertical" (14FV) which meant the boards were placed onto a tooling plate with pins facing the machine operator. Gone were the hydraulic units, in favor of direct drive motors to rotate the ball screws, with rotary encoders to provide positioning feedback. This generally provided better visibility of the product for the operator, although maximum wrap area was significantly less than the Horizontal machines. Top speeds on horizontal machines were generally around 500-600 wires per hour, while the vertical machines could reach rates as high as 1200 per hour, depending on board quality and wiring configurations.
In wire-wrapping, electronic design automation can design the board, and optimize the order in which wires are placed.
The first stage was that a schematic was encoded into a netlist. This step is now done automatically by EDA programs that perform "schematic capture". A netlist is conceptually a list of pins, with each pin having an associated signal name.
The next step was to encode the pin positions of each device. The easy way to do this is to encode lettered rows and numbered columns where the devices should go. The computer then assigns pin 1 of each device in the bill of materials to an intersection, and renames the devices in the bill of materials by their row and column.
The computer would then "explode" the device list into a complete pin list for the board by using templates for each type of device. A template is map of a device's pins. It can be encoded once, and then shared by all devices of that type.
Some systems optimized the design by experimentally swapping the positions of parts and logic gates to reduce the wire length. After each movement, the associated pins in the netlist would be renamed. Some systems could also automatically discover power pins in the devices, and generate wires to the nearest power pins.
The computer program then merges the netlist (sorted by pin name) with the pin list (sorted by pin name), transferring the physical coordinates of the pin list to the netlist. The netlist is then resorted, by net name.
The programs then try to reorder each net in the signal-pin list to "route" each signal in the shortest way. The routing problem is equivalent to the travelling salesman problem, which is NP complete, and therefore not amenable to a perfect solution on a reasonable time scale. One practical routing algorithm is to pick the pin farthest from the center of the board, then use a greedy algorithm to select the next-nearest pin with the same signal name.
Once routed, each pair of nodes in a net becomes a wire, in a "wire list". The computer then reads incidental information (wire color, order in the net, length of the wire, etc.) in the netlist and interprets it to renumber the wire list to optimize the ordering and direction of wires during production. The wire list is then resorted by the wire numbers.
For example, wires are always "top and bottomed". That is, wires alternate between high and low as they connect a series of pins. This lets a repair or modification occur with the removal of at most three wires.
Long wires are usually placed first within a level, so that shorter wires will hold longer wires down. This reduces vibration of the longer wires, making the board more rugged in a vibrating environment such as a vehicle.
Placing all the wires of a certain size makes it easier for a manual or semiautomated wire-wrapping machine to use precut wire. This especially speeds up manual wrapping.
Wires of different colors can also be placed together. Most wires are blue. Power and ground wires are often made with red and black. Clock wires (or other wires needing special routing) are often made yellow or white. Twisted pairs are usually black and white.
Another optimization is that within each size and color of wire, the computer selects the next wire so that the wrap head moves to the nearest pin. This can save up to 40% of the wrap time, almost getting two wire-wrap machines for the price of one. It also reduces wear on the wire-wrap machines.
Finally, the direction of placing a wire can be optimized for right-handed wire-wrap people, so that wires are placed from right to left. In a semi-automated wire-wrap system, this means that the wrap head moves away from the user's hand when placing a wire. The user can then use their strong hand and eye to route the wire.
Lastly, the sorted, optimized wire list is then printed out for use by machine operators, and turned into a tape or card deck for the machine. Machine-readable copies of this valuable production data are often archived at the same time.